Trust Assessment
api-design-principles received a trust score of 93/100, placing it in the Trusted category. This skill has passed all critical security checks and demonstrates strong security practices.
SkillShield's automated analysis identified 1 finding: 0 critical, 0 high, 1 medium, and 0 low severity. Key findings include Unsafe deserialization / dynamic eval.
The analysis covered 4 layers: Manifest Analysis, Static Code Analysis, Dependency Graph, LLM Behavioral Safety. All layers scored 70 or above, reflecting consistent security practices.
Last analyzed on February 11, 2026 (commit 5d65aa10). SkillShield performs automated 4-layer security analysis on AI skills and MCP servers.
Layer Breakdown
Behavioral Risk Signals
Security Findings1
| Severity | Finding | Layer | Location | |
|---|---|---|---|---|
| MEDIUM | Unsafe deserialization / dynamic eval Decryption followed by code execution Remove obfuscated code execution patterns. Legitimate code does not need base64-encoded payloads executed via eval, encrypted-then-executed blobs, or dynamic attribute resolution to call system functions. | Manifest | plugins/backend-development/skills/api-design-principles/assets/rest-api-template.py:3 |
Scan History
Embed Code
[](https://skillshield.io/report/9970de573e16f6f2)
Powered by SkillShield